Development and Optimization of Orally and Topically Applied Liquid Crystal Drug Formulations.
نویسندگان
چکیده
Liquid crystal (LC)-forming lipids represent an important class of biocompatible amphiphiles and their application extends to cosmeceutical, dietary, and pharmaceutical technologies. In the present study, we aimed to develop strategies for designing and optimizing oral and topical LC formulations by evaluating their in vitro and in vivo drug absorption performances. C17-Monoglycerol ester (MGE) was used as a LC-forming lipid. p-Amino benzoic acid, methyl PABA, ethyl PABA, and sodium fluorescein were selected as drug models with different physiochemical properties. Various oral and topical LC formulations were designed based on changes in the LC forming lipid contents in the formulations and entrapped with different physiochemical properties of the drugs. The LC phase structures were evaluated using small-angle X-ray scattering (SAXS). The drug-release profiles from LC formulations were determined using a dialysis membrane method. In vivo oral absorption of LC formulations was conducted in Wistar rats. Furthermore, the skin penetration of drugs from LC formulations was investigated by in vitro skin permeation studies. As a result, although the release profile was influenced by changes in MGE concentration, it was more dramatically influenced by changes in the physiochemical properties of the entrapped drugs. Drug absorption after oral and topical administration of LC formulations was dramatically affected by the concentration of MGE. The concentration of LC-forming lipid and the physiochemical properties of entrapped drugs are key issues for good performance of the LC formulations in various pharmaceutical applications. The present results could enable researchers to manipulate LC formulation approaches intended to improve the oral absorption and skin permeation of drugs.
منابع مشابه
Formulation Development and Evaluation of the Therapeutic Efficacy of Brinzolamide Containing Nanoemulsions
Brinzolamide (BZ) is an intraocular pressure reducing agent with low bioavailability. The purpose of the present study was to overcome this issue by development of BZ containing nanoemulsions (NEs) as an ocular drug delivery system with desirable therapeutic efficacy. Brinzolamide NEs were prepared by the spontaneous emulsification method. Based on initial release studies, twelve formulations w...
متن کاملFormulation Development and Evaluation of the Therapeutic Efficacy of Brinzolamide Containing Nanoemulsions
Brinzolamide (BZ) is an intraocular pressure reducing agent with low bioavailability. The purpose of the present study was to overcome this issue by development of BZ containing nanoemulsions (NEs) as an ocular drug delivery system with desirable therapeutic efficacy. Brinzolamide NEs were prepared by the spontaneous emulsification method. Based on initial release studies, twelve formulations w...
متن کاملFormulation Optimization and Assessment of Dexamethasone Orally Disintegrating Tablets Using Box-Behnken Design
The aim of this study was to prepare orally disintegrating tablets (ODTs) containingdexamethasone (DEX) by direct compression method with sufficient hardness and rapiddisintegration time. In order to save time, money, and human resources in designing andimprovement of formulation, the statistical software Design Expert is used. Box–Behnkenresponse surface methodology was applied to evaluate and...
متن کاملFormulation Optimization and Assessment of Dexamethasone Orally Disintegrating Tablets Using Box-Behnken Design
The aim of this study was to prepare orally disintegrating tablets (ODTs) containingdexamethasone (DEX) by direct compression method with sufficient hardness and rapiddisintegration time. In order to save time, money, and human resources in designing andimprovement of formulation, the statistical software Design Expert is used. Box–Behnkenresponse surface methodology was applied to evaluate and...
متن کاملFormulation and Evaluation of a Novel Matrix-Type Orally Disintegrating Ibuprofen Tablet
Orally disintegrating tablets (ODTs) are capable of turning quickly into a liquid dosage form in contact with the saliva, thus possessing the advantages of both the solid dosage forms particularly stability and liquid dosage forms specially ease of swallowing and pre-gastric absorption of drug. The aim of this study was to prepare a novel matrix-type buccal fast disintegrating ibuprofen tablet ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of oleo science
دوره 66 9 شماره
صفحات -
تاریخ انتشار 2017